Linearly convergent nonoverlapping domain decomposition methods for quasilinear parabolic equations
We prove linear convergence for a new family of modified Dirichlet–Neumann methods applied to quasilinear parabolic equations, as well as the convergence of the Robin–Robin method. Such nonoverlapping domain decomposition methods are commonly employed for the parallelization of partial differential equation solvers. Convergence has been extensively studied for elliptic equations, but in the case o