Predicting type 2 diabetes via machine learning integration of multiple omics from human pancreatic islets
Type 2 diabetes (T2D) is the fastest growing non-infectious disease worldwide. Impaired insulin secretion from pancreatic beta-cells is a hallmark of T2D, but the mechanisms behind this defect are insufficiently characterized. Integrating multiple layers of biomedical information, such as different Omics, may allow more accurate understanding of complex diseases such as T2D. Our aim was to explore