Search results

Filter

Filetype

Your search for "*" yielded 530150 hits

Rättssociologi: Examensarbete för masterexamen

A Master’s thesis is a scientific research project of limited scale that is intended to exhibit the student’s capacity to work independently and carry out research. The intension of the thesis is to make a genuine contribution of new knowledge, written in the genre of scientific research. The course involves students independently designing and completing a research project within the discipline oA Master’s thesis is a scientific research project of limited scale that is intended to exhibit the student’s capacity to work independently and carry out research. The intension of the thesis is to make a genuine contribution of new knowledge, written in the genre of scientific research. The course involves students independently designing and completing a research project within the discipline o

Rättssociologi: Examensarbete för magisterexamen

A Master’s thesis is a scientific research project of limited scale that is intended to exhibit the student’s capacity to work independently and carry out research. The intension of the thesis is to make a genuine contribution of new knowledge, written in the genre of scientific research. The course involves students independently designing and completing a research project within the discipline oA Master’s thesis is a scientific research project of limited scale that is intended to exhibit the student’s capacity to work independently and carry out research. The intension of the thesis is to make a genuine contribution of new knowledge, written in the genre of scientific research. The course involves students independently designing and completing a research project within the discipline o

Introduktion till rättssociologi, avancerad nivå

The aim of this course is to provide students with an in-depth knowledge of sociology of law while explaining how various theoretical traditions can be employed in analyzing concrete social issues which we confront today. The course will start with a presentation of the foundations of the sociology of law, discussing the relationship between different forms of regulation. The second part of the coThe aim of this course is to provide students with an in-depth knowledge of sociology of law while explaining how various theoretical traditions can be employed in analyzing concrete social issues which we confront today. The course will start with a presentation of the foundations of the sociology of law, discussing the relationship between different forms of regulation. The second part of the co

Aktuell rättssociologi

Delkurs 1: "The Multidisciplinarity of Sociology of Law" Du lär dig om den rättssociologins tvärvetenskapliga forskningstradition. Föreläsningarna behandlar rättssociologins rika tradition, dess begrepp och perspektiv samt hur närliggande discipliner samverkar och omorienterar dessa i rättssociologiska studier. Vi betonar förmågan att kritiskt kunna jämföra olika teorier och disciplinära inriktninModule 1: The Multidisciplinarity of Sociology of Law You learn about the multidisciplinary research tradition within the sociology of law. The lectures cover the rich tradition of sociology of law, its concepts and perspectives, and how related disciplines interrelate and reorient these in the study of sociology of law. We emphasise the ability to critically compare the various theories and disci

Statistik: Bayesianska metoder

Kursen behandlar bayesianska metoder, introducerar programvara som understödjer analysen och presenterar tillämpningar inom olika områden. Den inleds med en genomgång av betingade sannolikheter och Bayes sats. Begreppen subjektiv sannolikhet och likelihoodfunktion introduceras därefter. Den statistiska inferensen baseras på slumpmässiga stickprov och konjugerade a priori-fördelningar, inklusive a This course on Bayesian statistics covers methodology, major programming tools and applications in this field. The course starts with a review of conditional probability and Bayes’ Theorem. Introduction to the Bayesian approach will follow that includes discussing: subjective probability and likelihood function. Inference for populations is presented using random samples and conjugate priors, incl

Statistik: Affärsanalys

Affärsanalys (”business analytics”) syftar på vår förmåga att samla in och använda data för att generera insikter om faktabaserat beslutsfattande. Kursen är avsedd för dig med grundläggande kunskaper i statistik, och innehållet i kursen kommer att vara av praktisk natur. Det omfattar metoder för data mining och affärsanalys och deras användning för att göra strategiska affärsbeslut. Kursen behandlAnalytics refers to our ability to collect and use data to generate insights for fact-based decision-making. The course is designed for students with a basic knowledge of statistics, and the content of the course will be of practical nature. It covers methods for data mining and business analytics and their usage in making strategic business decisions. It will concentrate on the modeling aspects o

Statistik: Visualisering av data

På kursen kommer du att få lära dig teorin Grammar of Graphics för hur diagram och visualiseringar är uppbyggda. Du kommer också att få lära dig att själv skapa visualiseringar med hjälp av programmet R och paketet ggplot2. En central del av att skapa visualiseringar handlar om att göra val. Genom dina val kan du göra en visualisering mer eller mindre lätt att tolka och också framhäva olika aspektIn this course, you will learn how to construct graphs and visualisations according to the theory Grammar of Graphics. You will also learn how to create visualisations yourself using the software R and its package ggplot2. A central part of creating visualisations is making choices. Through the choices you make, your visualisation will be more or less intelligible and also highlight different

Statistik: Examensarbete - Magisteruppsats

I den här kursen ska du skriva ett särskilt arbete, vilket kan vara ett allmänt utredningsarbete eller ett arbete rörande en specifik problemställning eller forskningsfråga. Med hjälp av dina tidigare kunskap och erfarenhet i ämnet statistik, tränas du i att självständigt behandla ett problemområde.   Utöver att skriva en uppsats kommer du att muntligt presentera arbetet vid ett seminarium,In this course you will write a special assignment, which could consist of a general investigation, a more specific problem, or a research topic. Using your previous skills and knowledge in Statistics, you will be trained in independently investigating a problem. Apart from writing a thesis you will orally present your work during a seminar, attend and participate in discussions during seminars

Statistik: Deep learning och metoder för artificiell intelligens

Grunderna för maskininlärning samt de matematiska och beräkningsmässiga förkunskaperna för deep learning. Feed-forward artificiella neuronnät, convolutional artificiella neuronnät och de återkommande kopplingarna till feed-forward artificiella neuronnät. En kort historik över artificiell intelligens och artificiella neuronnät, samt genomgång av intressanta olösta forskningsproblem inom deep The fundamentals of machine learning, and the mathematical and computational prerequisites for deep learning Feed-forward neural networks, convolutional neural networks, and the recurrent connections to a feed-forward neural network A brief history of artificial intelligence and neural networks, and reviews interesting open research problems in deep learning and connectionism. The course

Statistik: Programmering för data science

I den här kursen får du lära dig modern statistisk datoranvändning inom data science genom implementeringar i populära programspråk såsom R och Python. Den behandlar följande ämnen: R- och Python-miljöerna: paket och moduler för statistik Arbeta med data frames, arrays och matriser Metoder för slumptalsgenerering Monte Carlo-integration, inferens och variansreducering Bootstrap och återsamplIn this course you will learn modern statistical computing as viewed in data science through implementations in popular computing platforms such as R and Python. It covers the following topics: The R and Python environment: R packages and Python modules for statistics Working with Data Frames, Arrays, and Matrices Methods for Generating Random Variables Monte Carlo Integration, Inference and

Statistik: Analys av textdata

Kursen ger en introduktion till statistisk analys av text. Du kommer att studera både metoder som bygger på både klassiska statistiska ansatser (inklusive Bayesianska modeller) och moderna ansatser som djupinlärning (recurrent neural networks). Ämnen som behandlas är bl.a. Olika sätt att representera text så att informationen går att analysera på ett statistiskt vis Tekniker för att klassifiThe course provides an introduction to statistical analysis of text. You will study both methods based on classic statistical approaches (including Bayesian models) and modern approaches such as deep learning (recurrent neural networks). Topics covered include Different ways to represent text to facilitate statistical analysis Techniques for classification fo text Text clustering Techniq

Statistik: Maskininlärning ur ett regressionsperspektiv

Maskininlärning handlar om statistiska prediktioner som förbättras genom erfarenhet; modellen lär och anpassar sig allt eftersom nya data blir tillgängliga. Exempelvis priset som en matvarubutik kan ta ut av en leverantör för en annons beror på hur bra den är på att hitta de kunder som är benägna att köpa leverantörens produkter. På samma sätt är det pris som Google kan ta ut för en annonslänk dirMachine learning refers to statistical model predictions that that improve through experience; as new data arrive, the model learns and adapts. For instance, the price that the supermarket can charge for advertisements depends critically on its ability to learn from the data which customers that are likely prospects for a particular supplier’s product. Similarly, the price that Google can charge f

Statistik: Avancerad maskininlärning

I denna kurs får du lära dig maskininlärningsmetoder som är relevanta för tillämpningar inom företags- och nationalekonomi. Kursen utgör en fortsättning på STAN51 Maskininlärning ur ett regressionsperspektiv. Några av delmomenten i kursen är bootstrapmetoder, ensemblemetoder såsom boosting och slumpskogar, metoder för oövervakad inlärning såsom principalkomponentanalys och klustermetoder, samt tiThis course covers advanced machine learning methods that are relevant for applications in business and economics, and is intended as a continuation of STAN51 Machine Learning from a Regression Perspective. Some of the topics covered include bootstrapping, ensemble methods such as boosting and random forests, unsupervised machine learning methods such as principal components analysis and clusteri

Statistik: Högdimensionell dataanalys

Kursen behandlar bland annat matriser och multivariat normalfördelning singulärvärdesuppdelning och dess geometriska tolkning principalkomponentanalys inklusive dess funktionalformulering faktoranalys klusteranalys prediktionssteori inklusive prediktion med högdimensionella prediktorer penalised regression och prediktion glesa matriser linjär diskriminantanalys storskalig infThe course covers matrices and multivariate normal distribution singular value decomposition and its geometric interpretation principal component analysis including its functional formulation factor analysis cluster analysis prediction theory including prediction with high-dimensional predictors penalised regression and prediction sparse matrices linear discriminant analysis

Statistics: Second Year Master Thesis

I den här kursen ska du skriva ett examensarbete, vilket kan vara ett arbete rörande en specifik problemställning eller forskningsfråga. Med hjälp av din tidigare kunskap och erfarenhet i ämnet statistik, tränas du i att självständigt behandla ett problemområde.   Utöver att skriva en uppsats kommer du att muntligt presentera arbetet vid ett seminarium, att närvara och deltaga i diskusIn this course you will write a thesis, which could consist of a specific problem or a research topic. Using your previoius skills and knowledge in Statistics, you will be trained in independently investigating a problem. Apart from writing a thesis you will orally present your work during a seminar, attend and participate in discussions during semiars, and act as an opponent during a pre

Statistik: Statistiska metoder för marketing science

Den här kursen är tänkt för dig som är yrkesverksam inom marknadsföring och vill lära dig mer om statistiska metoder inom marknadsundersökningar. Den kan också läsas som ett komplement till magisterprogrammet i marknadsföring. Kursen fokuserar därför på praktisk tillämpning av ett antal olika statistiska metoder som är användbara inom marketing science. Undervisningen är även förlagd till sen efteThis course is intended for you, who work with marketing and want to learn more about statistical methods in market research. It may also be taken as a supplement to the master’s programme in marketing. The course focuses on mastering application of a number of statistical methods that are useful for marketing science. Classes are scheduled in the late afternoon once a week to facilitate dayt

Statsvetenskap: Fältarbete, praktik och forskningsöversikt

Please note that this is only open to students currently studying the BSc programme in Development Studies, majoring in Political Science. The course aims at giving the students the experience of working in a development context. It also serves as a means of gathering material for the forthcoming bachelor’s thesis. The course is divided into three 15-credit tracks, and the student has to choose onPlease note that this is only open to students currently studying the BSc programme in Development Studies, majoring in Political Science. The course aims at giving the students the experience of working in a development context. It also serves as a means of gathering material for the forthcoming bachelor’s thesis. The course is divided into three 15-credit tracks, and the student has to choose on

Political Science: The Politics of Development

This course in political science is offered to students in Lund University’s Bachelor Programme in Development Studies (BIDS). The course explores the political dimensions of development policies and processes with an emphasis on the global governance level and the national level. We look into governance structures, institutions and power relations shaping current development thought and practiceThis course in political science is offered to students in Lund University's Bachelor Programme in Development Studies (BIDS). The course explores the political dimensions of development policies and processes with an emphasis on the global governance level and the national level. We look into governance structures, institutions and power relations shaping current development thought and practice

Statsvetenskap: Utveckling och internationell politisk ekonomi

This course is open to students in the BSc in Development Studies programme (BIDS) majoring in Political Science. The course introduces International Political Economy (IPE) with an emphasis on theories, theorists and issues that problematise the politics and political economy of development, North-South relations and ethics. The first part of the course is designed to examine the roots of InternThis course is open to students in the BSc in Development Studies programme (BIDS) majoring in Political Science. The course introduces International Political Economy (IPE) with an emphasis on theories, theorists and issues that problematise the politics and political economy of development, North-South relations and ethics. The first part of the course is designed to examine the roots of Intern

Statsvetenskap: Governance i miljöpolitiken

The aim of the course is to examine environmental change as a problem of governance. We scrutinize major governance dimensions - such as actors, institutions and problem structures - at multiple levels and across domains. This includes the interplay of government, market and civil society in efforts to mitigate and adapt to environmental change.  The course critically approaches th