Search results

Filter

Filetype

Your search for "*" yielded 533538 hits

Biofilm formation enhances fomite survival of Streptococcus pneumoniae and Streptococcus pyogenes

Both Streptococcus pyogenes and Streptococcus pneumoniae are widely thought to rapidly die outside the human host, losing infectivity following desiccation in the environment. However, to date, all literature investigating the infectivity of desiccated streptococci has used broth-grown, planktonic populations. In this study, we examined the impact of biofilm formation on environmental survival of

A complex of equine lysozyme and oleic acid with bactericidal activity against Streptococcus pneumoniae

HAMLET and ELOA are complexes consisting of oleic acid and two homologous, yet functionally different, proteins with cytotoxic activities against mammalian cells, with HAMLET showing higher tumor cells specificity, possibly due to the difference in propensity for oleic acid binding, as HAMLET binds 5-8 oleic acid molecules per protein molecule and ELOA binds 11-48 oleic acids. HAMLET has been show

Internalization and trafficking of nontypeable Haemophilus influenzae in human respiratory epithelial cells and roles of IgA1 proteases for optimal invasion and persistence

Nontypeable Haemophilus influenzae (NTHI) is a leading cause of opportunistic infections of the respiratory tract in children and adults. Although considered an extracellular pathogen, NTHI has been observed repeatedly within and between cells of the human respiratory tract, and these observations have been correlated to symptomatic infection. These findings are intriguing in light of the knowledg

Interkingdom signaling induces Streptococcus pneumoniae biofilm dispersion and transition from asymptomatic colonization to disease

UNLABELLED: Streptococcus pneumoniae is a common human nasopharyngeal commensal colonizing 10% to 40% of healthy individuals, depending on age. Despite a low invasive disease rate, widespread carriage ensures that infection occurs often enough to make S. pneumoniae a leading bacterial cause of respiratory disease worldwide. However, the mechanisms behind transition from asymptomatic colonization t

Sensitization of Staphylococcus aureus to methicillin and other antibiotics in vitro and in vivo in the presence of HAMLET

HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a protein-lipid complex from human milk with both tumoricidal and bactericidal activities. HAMLET exerts a rather specific bactericidal activity against some respiratory pathogens, with highest activity against Streptococcus pneumoniae, but lacks activity against most other bacterial pathogens, including Staphylococci. Still, ion trans

High levels of genetic recombination during nasopharyngeal carriage and biofilm formation in Streptococcus pneumoniae

UNLABELLED: Transformation of genetic material between bacteria was first observed in the 1920s using Streptococcus pneumoniae as a model organism. Since then, the mechanism of competence induction and transformation has been well characterized, mainly using planktonic bacteria or septic infection models. However, epidemiological evidence suggests that genetic exchange occurs primarily during pneu

The human milk protein-lipid complex HAMLET sensitizes bacterial pathogens to traditional antimicrobial agents

The fight against antibiotic resistance is one of the most significant challenges to public health of our time. The inevitable development of resistance following the introduction of novel antibiotics has led to an urgent need for the development of new antibacterial drugs with new mechanisms of action that are not susceptible to existing resistance mechanisms. One such compound is HAMLET, a natur

A novel initiation mechanism of death in Streptococcus pneumoniae induced by the human milk protein-lipid complex HAMLET and activated during physiological death

To cause colonization or infection, most bacteria grow in biofilms where differentiation and death of subpopulations is critical for optimal survival of the whole population. However, little is known about initiation of bacterial death under physiological conditions. Membrane depolarization has been suggested, but never shown to be involved, due to the difficulty of performing such studies in bact

Pneumococcal interactions with epithelial cells are crucial for optimal biofilm formation and colonization in vitro and in vivo

The human nasopharynx is the main reservoir for Streptococcus pneumoniae (the pneumococcus) and the source for both horizontal spread and transition to infection. Some clinical evidence indicates that nasopharyngeal carriage is harder to eradicate with antibiotics than is pneumococcal invasive disease, which may suggest that colonizing pneumococci exist in biofilm communities that are more resista

Oleic acid is a key cytotoxic component of HAMLET-like complexes

HAMLET is a complex of α-lactalbumin (α-LA) with oleic acid (OA) that selectively kills tumor cells and Streptococcus pneumoniae. To assess the contribution of the proteinaceous component to cytotoxicity of HAMLET, OA complexes with proteins structurally and functionally distinct from α-LA were prepared. Similar to HAMLET, the OA complexes with bovine β-lactoglobulin (bLG) and pike parvalbumin (pP

Role of dihydrolipoamide dehydrogenase in regulation of raffinose transport in Streptococcus pneumoniae

Streptococcus pneumoniae strains lacking the enzyme dihydrolipoamide dehydrogenase (DLDH) show markedly reduced ability to grow on raffinose and stachyose as sole carbon sources. Import of these sugars occurs through the previously characterized raffinose ATP-binding cassette (ABC) transport system, encoded by the raf operon, that lacks the necessary ATP-binding protein. In this study, we identifi

A novel method for preparation of HAMLET-like protein complexes

Some natural proteins induce tumor-selective apoptosis. α-Lactalbumin (α-LA), a milk calcium-binding protein, is converted into an antitumor form, called HAMLET/BAMLET, via partial unfolding and association with oleic acid (OA). Besides triggering multiple cell death mechanisms in tumor cells, HAMLET exhibits bactericidal activity against Streptococcus pneumoniae. The existing methods for preparat

Streptolysin O inhibits clathrin-dependent internalization of group A Streptococcus

Group A Streptococcus (GAS) can be internalized by epithelial cells, including keratinocytes from human skin or pharyngeal epithelium. Internalization of GAS by epithelial cells has been postulated both to play a role in host defense and to provide a sanctuary site for GAS survival. The cholesterol-binding cytolysin streptolysin O (SLO) appears to enhance virulence in part by inhibiting GAS intern

Enzymatic characterization of dihydrolipoamide dehydrogenase from Streptococcus pneumoniae harboring its own substrate

This study describes the enzymatic characterization of dihydrolipoamide dehydrogenase (DLDH) from Streptococcus pneumoniae and is the first characterization of a DLDH that carries its own substrate (a lipoic acid covalently attached to a lipoyl protein domain) within its own sequence. Full-length recombinant DLDH (rDLDH) was expressed and compared with enzyme expressed in the absence of lipoic aci

Capsule does not block antibody binding to PspA, a surface virulence protein of Streptococcus pneumoniae

Of the proteins on the surface of Streptococcus pneumoniae, one of those best able to elicit protection against pneumococcal infection is pneumococcal surface protein A (PspA). Although this protein is attached to the membrane molecule, lipoteichoic acid, which is well beneath the capsule, PspA's ability to inhibit complement deposition and killing by apolactoferrin, suggests that it must have sur

A folding variant of alpha-lactalbumin with bactericidal activity against Streptococcus pneumoniae

This study describes an alpha-lactalbumin folding variant from human milk with bactericidal activity against antibiotic-resistant and -susceptible strains of Streptococcus pneumoniae. The active complex precipitated with the casein fraction at pH 4.6 and was purified from casein by a combination of anion exchange and gel chromatography. Unlike other casein components, the active complex was retain

Protease activation in apoptosis induced by MAL

The proteolytic caspase cascade plays a central role in the signaling and execution steps of apoptosis. This study investigated the activation of different caspases in apoptosis induced by MAL (a folding variant of human alpha-lactalbumin) isolated from human milk. Our results show that the caspase-3-like enzymes, and to a lesser extent the caspase-6-like enzymes, were activated in Jurkat and A549

Conversion of alpha-lactalbumin to a protein inducing apoptosis

In this study alpha-lactalbumin was converted from the regular, native state to a folding variant with altered biological function. The folding variant was shown to induce apoptosis in tumor cells and immature cells, but healthy cells were resistant to this effect. Conversion to HAMLET (human alpha-lactalbumin made lethal to tumor cells) required partial unfolding of the protein and a specific fat