Deep learning-based auditory attention decoding in listeners with hearing impairment
This study develops a deep learning method for fast auditory attention decoding (AAD) using electroencephalography (EEG) from listeners with hearing impairment. It addresses three classification tasks: differentiating noise from speech-in-noise, classifying the direction of attended speech (left vs. right) and identifying the activation status of hearing aid noise reduction (NR) algorithms (OFF vs
