Bayesian modelling of spatial data using Markov random fields, with application to elemental composition of forest soil
Spatial datasets are common in the environmental sciences. In this study we suggest a hierarchical model for a spatial stochastic field. The main focus of this article is to approximate a stochastic field with a Gaussian Markov Random Field (GMRF) to exploit computational advantages of the Markov field, concerning predictions, etc. The variation of the stochastic field is modelled as a linear tren
