LCA queries in directed acyclic graphs
We present two methods for finding a lowest common ancestor (LCA) for each pair of vertices of a directed acyclic graph (dag) on n vertices and m edges. The first method is surprisingly natural and solves the all-pairs LCA problem for the input dag on n vertices and m edges in time O(nm). As a corollary, we obtain an O(n(2))-time algorithm for finding genealogical distances considerably improving