Sökresultat

Filtyp

Din sökning på "*" gav 528046 sökträffar

No title

LUNDS TEKNISKA HÖGSKOLA LÖSNINGSFÖRSLAG MATEMATIK FMAA50 – Analys 2 2023-03-17 kl. 8.00–13.00 1. Svar: a) 1 b) 8 3 c) ln 3 Lösningsförslag: a) Via partialintegrering erh̊alles att∫ 1 0 xex dx = [ xex ]1 0 − ∫ 1 0 1 · ex dx = e− 0− [ ex ]1 0 = e− (e− 1) = 1. b) Variabelsubstitutionen t = √ x+ 1 ger att∫ 3 0 x√ x+ 1 dx = [ t = √ x+ 1, x = t2 − 1, dx = 2t dt x = 0 ⇒ t = 1, x = 3 ⇒ t = 2 ] = ∫ 2

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Analys_2/Loesningar/Tentamen_Analys_2_230317_sol.pdf - 2025-01-17

No title

LUNDS TEKNISKA HÖGSKOLA LÖSNINGSFÖRSLAG MATEMATIK FMAA50 – Analys 2 2023-08-14 kl. 14.00–19.00 1. Svar: a) 3 b) √ 3 c) √ 3 2 − π 6 d) 1 Lösningsförslag: a) ∫ 8 1 1 x2/3 dx = [ 3x1/3 ]8 1 = 3 · 2− 3 · 1 = 3 b) ∫ π/3 0 1 cos2 x dx = [ tanx ]π/3 0 = √ 3− 0 = √ 3 c) Via partialintegrering erh̊alles att∫ π/3 0 x sinx dx = [ x · (− cosx) ]π/3 0 − ∫ π/3 0 1 · (− cosx) dx = = π 3 · ( −1 2 ) − 0 + ∫ π

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Analys_2/Loesningar/Tentamen_Analys_2_230814_sol.pdf - 2025-01-17

No title

LUNDS TEKNISKA HÖGSKOLA LÖSNINGSFÖRSLAG MATEMATIK FMAA50 – Analys 2 2024-04-08 kl. 14.00–19.00 1. Svar: a) −1 3 b) 1 9 c) 6 + ln 7 d) 1 2e4 Lösningsförslag: a) ∫ π/2 π/3 cos(3x) dx = [ sin(3x) 3 ]π/2 π/3 = −1 3 b) ∫ 6 2 1 x3 dx = [ − 1 2x2 ]6 2 = − 1 72 + 1 8 = 1 9 c) Via polynomdivision av integranden erh̊alles att∫ 5 −1 x+ 3 x+ 2 dx = ∫ 5 −1 1 · (x+ 2) + 1 x+ 2 dx = ∫ 5 −1 ( 1 + 1 x+ 2 ) dx

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Analys_2/Loesningar/Tentamen_Analys_2_240408_sol.pdf - 2025-01-17

No title

LUNDS TEKNISKA HÖGSKOLA LÖSNINGSFÖRSLAG MATEMATIK FMAA50 – Analys 2 2024-08-19 kl. 14.00–19.00 1. Svar: a) 10 √ 5 b) ln 6 c) π 2 Lösningsförslag: a) ∫ 5 0 x √ x dx = ∫ 5 0 x3/2 dx = [ 2 5 x5/2 ]5 0 = 2 · 53/2 − 0 = 10 √ 5 b) Via partialbr̊aksuppdelning av integranden erh̊alles att∫ 4 −1 3x− 8 (x+ 2)(x− 5) dx = ∫ 4 −1 ( 2 x+ 2 + 1 x− 5 ) dx = [ 2 ln|x+ 2|+ ln|x− 5| ]4 −1 = 2 ln 6 + ln 1− 2 ln

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Analys_2/Loesningar/Tentamen_Analys_2_240819_sol.pdf - 2025-01-17

No title

LUNDS TEKNISKA HÖGSKOLA TENTAMENSSKRIVNING MATEMATIK FMAA50 – Analys 2 2023-04-17 kl. 14.00–19.00 Hjälpmedel: formelblad Lösningarna ska vara försedda med ordentliga motiveringar och svaren ska förenklas max- imalt. 1. Beräkna a) ∫ 2 1 ( 1 x2 − 1 x3 ) dx, (0.2) b) ∫ 3 −1 x x2 + 1 dx, (0.2) c) ∫ π 3 0 sinx√ cosx dx, (0.3) d) ∫ 2 0 x2 − 2 x+ 1 dx. (0.3) 2. Lös begynnelsevärdesproblemen a) yy

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Analys_2/Tentor/Tentamen_Analys_2_230417.pdf - 2025-01-17

No title

LUNDS TEKNISKA HÖGSKOLA TENTAMENSSKRIVNING MATEMATIK FMAA50 – Analys 2 2024-03-11 kl. 8.00–13.00 Hjälpmedel: formelblad Lösningarna ska vara försedda med ordentliga motiveringar och svaren ska förenklas max- imalt. 1. Beräkna a) ∫ 1/4 1/9 1√ x dx, (0.2) b) ∫ π/4 0 sin2 x dx, (0.4) c) ∫ 1 0 x+ 5 x2 + 4x+ 3 dx. (0.4) 2. Lös begynnelsevärdesproblemen a) e2yy′ = x, y(0) = 0, (0.4) b) xy′ + 2y

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Analys_2/Tentor/Tentamen_Analys_2_240311.pdf - 2025-01-17

No title

LUNDS TEKNISKA HÖGSKOLA MATEMATIK Helsingborg LÖSNINGAR Linjär algebra, FMAA55 2023-04-19 1. a) Insättning av ℓ:s ekvation (x, y, z) = (1 + t, 8− 2t, 3t) i planets ekvation ger 2(1+t)+(8−2t)+3t−7 = 0⇐⇒ 2+2t+8−2t+3t−7 = 0⇐⇒ 3t+3 = 0⇐⇒ t = −1. Insättning av t = −1 i ℓ:s ekvation ger då skärningspunkten (x, y, z) = (1 + (−1), 8− 2(−1), 3(−1)) = (0, 10,−3). b) Skärningen finns genom lösning av ekvatio

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Linjaer_algebra/Loesningar/Solution_Linj_r_Algebra_FMAA55_2023_04_19.pdf - 2025-01-17

No title

LUNDS TEKNISKA HÖGSKOLA MATEMATIK Helsingborg TENTAMENSSKRIVNING LINJÄR ALGEBRA, FMAA55 2023-06-02 kl 8.00-13.00 INGA HJÄLPMEDEL. Lösningarna skall vara försedda med ordentliga motiveringar och svaren förenklas maximalt. Alla baser och koordinatsystem får antas vara ortonormerade och positivt orienterade, om inte annat anges. 1. Två linjer har ekvationerna ℓ1 : (x, y, z) = (0, 1, 3) + t(1,−1,−2) o

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Linjaer_algebra/Tentor/Tentamen___Linjaer_Algebra_FMAA55_2023_06_02.pdf - 2025-01-17

No title

LUNDS TEKNISKA HÖGSKOLA MATEMATIK Helsingborg TENTAMENSSKRIVNING LINJÄR ALGEBRA, FMAA55 2023-08-22 kl 8.00-13.00 INGA HJÄLPMEDEL. Lösningarna skall vara försedda med ordentliga motiveringar och svaren förenklas maximalt. Alla baser och koordinatsystem får antas vara ortonormerade och positivt orienterade, om inte annat anges. 1. Vilka av följande matriser har en invers? A = ( 1 7 6 0 −3 4 ) , B =

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Linjaer_algebra/Tentor/Tentamen___Linjaer_Algebra_FMAA55_2023_08_22.pdf - 2025-01-17

No title

LUNDS TEKNISKA HÖGSKOLA MATEMATIK Helsingborg TENTAMENSSKRIVNING LINJÄR ALGEBRA, FMAA55 2024-04-10 kl 8.00-13.00 INGA HJÄLPMEDEL. Lösningarna skall vara försedda med ordentliga motiveringar och svaren förenklas maximalt. Alla baser och koordinatsystem får antas vara ortonormerade och positivt orienterade, om inte annat anges. 1. Punkterna P : (−2, 0, 0), Q : (0, 1, 1) och R : (1, 2, 1) är givna. a

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Linjaer_algebra/Tentor/Tentamen___Linjaer_Algebra_FMAA55_2024_04_10.pdf - 2025-01-17

No title

LUNDS TEKNISKA HÖGSKOLA MATEMATIK Helsingborg TENTAMENSSKRIVNING LINJÄR ALGEBRA, FMAA55 2024-05-31 kl 8.00-13.00 INGA HJÄLPMEDEL. Lösningarna skall vara försedda med ordentliga motiveringar och svaren förenklas maximalt. Alla baser och koordinatsystem får antas vara ortonormerade och positivt orienterade, om inte annat anges. 1. Betrakta vektorerna u = (3, 1, 4) och v = (−4, 3,−1). a) Låt ℓ1 vara

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Linjaer_algebra/Tentor/Tentamen___Linjaer_Algebra_FMAA55_2024_05_31.pdf - 2025-01-17

No title

LUNDS TEKNISKA HÖGSKOLA MATEMATIK Helsingborg TENTAMENSSKRIVNING LINJÄR ALGEBRA, FMAA55 2024-08-27 kl 8.00-13.00 INGA HJÄLPMEDEL. Lösningarna skall vara försedda med ordentliga motiveringar och svaren förenklas maximalt. Alla baser och koordinatsystem får antas vara ortonormerade och positivt orienterade, om inte annat anges. 1. Betrakta linjerna ℓ1 : (x, y, z) = (1 + t, 2− t,−3− 2t) och ℓ2 : (x,

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Linjaer_algebra/Tentor/Tentamen___Linjaer_Algebra_FMAA55_2024_08_27.pdf - 2025-01-17

No title

Matematisk statistik Lösning: 2023–04–12 kl 800–1300 Matematikcentrum FMSF30 & FMSF32 Lunds universitet Matematisk statistik Lösningsförslag 1. För ξ ∼ R(1, 4) gäller F (x) = x−1 3 , 1 ≤ x ≤ 4, men denna m̊aste inte beräknas för att lösa uppgiften. (a) Vad är F (1) = 0 och F (4) = 1 eftersom de motsvarar P (ξ < x) för minsta respektive största värdet. (0.3) (b) P (ξ1 ≤ 2.5 ∩ · · · ∩ ξ4

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Matematisk_statistik/Loesningar/fmsf30_32_230412_lsn.pdf - 2025-01-17

No title

Matematisk statistik Tentamen: 2023–10–27 kl 800–1300 Matematikcentrum FMSF30 & FMSF32 Lunds universitet Matematisk statistik • Lösningsförslag 1. Definiera händelserna S - en person är sjuk, samt T - en person testar positivt. Ur texten f̊as P (S) = 0.001, P (T |S) = 0.99 samt P (T |Sc) = 0.005, där Sc är komplementhändelsen till sjuk, dvs frisk. (a) Sannolikheten att en slumpmässig perso

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Matematisk_statistik/Loesningar/fmsf30_32_231027_lsg.pdf - 2025-01-17

No title

Matematisk statistik Tentamen: 2024–04–03 kl 800–1300 Matematikcentrum FMSF30 & FMSF32 Lunds universitet Matematisk statistik Lösningsförslag 1. Beteckna händelsen A: läser tidning A, och motsvarande för B och C. Vi har d̊a P (A) = 1/3, P (B) = 1/4, P (C) = 1/6, P (A ∩B) = 1/6, P (B ∩ C) = 1/12, samt P (A ∩ C) = 0. (a) Om A och C är oberoende gäller P (A ∩ C) = P (A)P (C). Dock är 0 ̸= 1/3

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Matematisk_statistik/Loesningar/fmsf30_32_240403_lsg.pdf - 2025-01-17

No title

Matematisk statistik Tentamen: 2024–08–30 kl 800–1300 Matematikcentrum FMSF30 & FMSF32 Lunds universitet Matematisk statistik Lösningsförslag 1. Beteckna händelserna: Ai: lampa i fungerar (a) (0.3) P (alla fungerar) = P (A1 ∩A2 ∩A3) = P (A1)P (A2|A1)P (A3|A1 ∩A2) = 6 10 · 5 9 · 4 8 = 1 6 (b) (0.3) P (A1 ∩A2 ∩Ac 3) = P (A1)P (A2|A1)P (Ac 3|A1 ∩A2) = 6 10 · 5 9 · 4 8 = 1 6 (c) Vi kan f̊a exakt tv

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Matematisk_statistik/Loesningar/fmsf30_32_240830_lsg.pdf - 2025-01-17

No title

Matematisk statistik Tentamen: 2023–04–12 kl 800–1300 Matematikcentrum FMSF30 & FMSF32 Lunds universitet Matematisk statistik • Hjälpmedel: Miniräknare och utdelad formelsamling • Lösningar ska vara försedda med ordentliga motiveringar och svaren förenklas maximalt • Skriv anonymkod (eller namn om du saknar kod) p̊a varje papper • P̊a omslaget m̊aste du skriva med bläck • Skriv endast p̊a en

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Matematisk_statistik/Tentor/fmsf30_32_230412.pdf - 2025-01-17

No title

Matematisk statistik Tentamen: 2023–08–25 kl 800–1300 Matematikcentrum FMSF30 & FMSF32 Lunds universitet Matematisk statistik • Hjälpmedel: Miniräknare och utdelad formelsamling • Lösningar ska vara försedda med ordentliga motiveringar och svaren förenklas maximalt • Skriv anonymkod (eller namn om du saknar kod) p̊a varje papper • P̊a omslaget m̊aste du skriva med bläck • Skriv endast p̊a en

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Matematisk_statistik/Tentor/fmsf30_32_230825.pdf - 2025-01-17

No title

Matematisk statistik Tentamen: 2024–10–29 kl 1400–1900 Matematikcentrum FMSF30 & FMSF32 Lunds universitet Matematisk statistik • Till̊atna hjälpmedel: Miniräknare samt utdelad formelsamling (häftad med tentamen). • Tentamen best̊ar av 6 uppgifter om 1.0 poäng vardera, med delpoäng om minst 0.1 poäng. • Betygsgränser: Betyg 3 (godkänt): 3.0 poäng. Betyg 4: 4.0 poäng. Betyg 5: 5.0 poäng.

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Matematisk_statistik/Tentor/fmsf30_32_241029.pdf - 2025-01-17

No title

Lunds Tekniska Högskola Matematik Helsingborg Lösningar, FMSF40 Sannolikhetsteori och Diskret Matematik 2023-10-27 1. a) Vi har 1 = ∫ ∞ −∞ f(x) dx = ∫ 0 −∞ k · e3x dx+ ∫ ∞ 0 1 3 e−x dx = [ k · 1 3 e3x ]0 −∞ + [ 1 3 · 1 −1 · e−x ]∞ 0 = k · 1 3 − 0 + 0− ( −1 3 ) = k 3 + 1 3 = k+1 3 . Vi har allts̊a 1 = k+1 3 vilket ger k = 2. b) Om x ≤ 0 gäller F (x) = ∫ x −∞ f(t) dt = ∫ x −∞ 2e3t dt = [ 2 · 1 3

https://www.maths.lu.se/fileadmin/matematik_lth_hbg/Sannolikhetsteori_och_diskret_matematik/Loesningar/Solution_Sannolikhetsteori_och_Diskret_Matematik_FMSF40_2023_10_27.pdf - 2025-01-17