Series Decomposition of fractional Brownian motion and its Lamperti transform
The Lamperti transformation of a self-similar process is a stationary process. In particular, the fractional Brownian motion transforms to the second order stationary Gaussian process. This process is represented as a series of independent processes. The terms of this series are Ornstein-Uhlenbeck processes if H < 1/2, and linear combinations of two dependent Ornstein-Uhlenbeck processes whose two