Search results

Filter

Filetype

Your search for "*" yielded 526114 hits

Coarse-grained tight-binding models

Calculating the electronic structure of systems involving very different length scales presents a challenge. Empirical atomistic descriptions such as pseudopotentials or tight-binding models allow one to calculate the effects of atomic placements, but the computational burden increases rapidly with the size of the system, limiting the ability to treat weakly bound extended electronic states. Here

Public entities responsible for court administration and supervision over judges

Public entities can be responsible for court administration and supervision over judges. This article provides an overview of this issue, using Sweden as the main example. The article contains a general discussion on what is understood by ’supervision’ and ‘public entities’, how such a topic can be analysed, and how supervision can preferably be arranged so as to safeguard a high level of judicial

The origin of enhanced O2+ production from photoionized CO2 clusters

CO2-rich planetary atmospheres are continuously exposed to ionising radiation driving major photochemical processes. In the Martian atmosphere, CO2 clusters are predicted to exist at high altitudes motivating a deeper understanding of their photochemistry. In this joint experimental-theoretical study, we investigate the photoreactions of CO2 clusters (≤2 nm) induced by soft X-ray ionisation. We ob

Noise-resilient and interpretable epileptic seizure detection

Deep convolutional neural networks have recently emerged as a state-of-the art tool in detection of seizures. Such models offer the ability to extract complex nonlinear representations of an electroencephalogram (EEG) signal which can improve accuracy over methods relying on hand-crafted features. However, neural networks are susceptible to confounding artifacts commonly present in EEG signals and

Security-aware routing and scheduling for control applications on ethernet TSN networks

Today, it is common knowledge in the cyber-physical systems domain that the tight interaction between the cyber and physical elements provides the possibility of substantially improving the performance of these systems that is otherwise impossible. On the downside, however, this tight interaction with cyber elements makes it easier for an adversary to compromise the safety of the system. This beco

Real-time classification technique for early detection and prevention of myocardial infarction on wearable devices

Continuous monitoring of patients suffering from cardiovascular diseases and, in particular, myocardial infarction (MI) places a considerable burden on health-care systems and government budgets. The rise of wearable devices alleviates this burden, allowing for long-term patient monitoring in ambulatory settings. One of the major challenges in this area is to design ultra-low energy wearable devic

Stability-aware integrated routing and scheduling for control applications in Ethernet networks

Real-time communication over Ethernet is becoming important in various application areas of cyber-physical systems such as industrial automation and control, avionics, and automotive networking. Since such applications are typically time critical, Ethernet technology has been enhanced to support time-driven communication through the IEEE 802.1 TSN standards. The performance and stability of contro

Personalized Real-Time Federated Learning for Epileptic Seizure Detection

Epilepsy is one of the most prevalent paroxystic neurological disorders. It is characterized by the occurrence of spontaneous seizures. About 1 out of 3 patients have drug-resistant epilepsy, thus their seizures cannot be controlled by medication. Automatic detection of epileptic seizures can substantially improve the patient's quality of life. To achieve a high-quality model, we have to collect d

Analysis and design of real-time servers for control applications

Today, a considerable portion of embedded systems, e.g., automotive and avionic, comprise several control applications. Guaranteeing the stability of these control applications in embedded systems, or cyber-physical systems, is perhaps the most fundamental requirement while implementing such applications. This is different from the classical hard real-time systems where often the acceptance criter

Intrusion-damage assessment and mitigation in cyber-physical systems for control applications

With cyber-physical systems opening to the outside world, security can no longer be considered a secondary issue. One of the key aspects in security of cyber-phyiscal systems is to deal with intrusions. In this paper, we highlight the several unique properties of control applications in cyber-physical systems. Using these unique properties, we propose a systematic intrusion-damage assessment and m

Avian Neo-Sex Chromosomes Reveal Dynamics of Recombination Suppression and W Degeneration

How the avian sex chromosomes first evolved from autosomes remains elusive as 100 million years (My) of divergence and degeneration obscure their evolutionary history. The Sylvioidea group of songbirds is interesting for understanding avian sex chromosome evolution because a chromosome fusion event ∼24 Ma formed "neo-sex chromosomes" consisting of an added (new) and an ancestral (old) part. Here,

Ultralight bosons for strong gravity applications from simple Standard Model extensions

We construct families, and concrete examples, of simple extensions of the Standard Model that can yield ultralight real or complex vectors or scalars with potential astrophysical relevance. Specifically, the mass range for these putative fundamental bosons (∼ 10-10-10-20 eV) would lead dynamically to both new non-black hole compact objects (bosonic stars) and new non-Kerr black holes, with masses

Characterization of electrostatically defined bottom-heated InAs nanowire quantum dot systems

Conversion of temperature gradients to charge currents in quantum dot systems enables probing various concepts from highly efficient energy harvesting and fundamental thermodynamics to spectroscopic possibilities complementary to conventional bias device characterization. In this work, we present a proof-of-concept study of a device architecture where bottom-gates are capacitively coupled to an In

Examination of the sensitivity of quasifree reactions to details of the bound-state overlap functions

It is often stated that heavy-ion nucleon knockout reactions are mostly sensitive to the tails of the bound-state wave functions. In contrast, (p,2p) and (p,pn) reactions are known to access information on the full overlap functions within the nucleus. We analyze the oxygen isotopic chain and explore the differences between single-particle wave functions generated with potential models, used in th

Downstroke and upstroke conflict during banked turns in butterflies

For all flyers, aeroplanes or animals, making banked turns involve a rolling motion which, due to higher induced drag on the outer than the inner wing, results in a yawing torque opposite to the turn. This adverse yaw torque can be counteracted using a tail, but how animals that lack tail, e.g. all insects, handle this problem is not fully understood. Here, we quantify the performance of turning t

Downfolding the Su-Schrieffer-Heeger model

Charge-density waves are responsible for symmetry-breaking displacements of atoms and concomitant changes in the electronic structure. Linear response theories, in particular density-functional perturbation theory, provide a way to study the effect of displacements on both the total energy and the electronic structure based on a single ab initio calculation. In downfolding approaches, the electron

Short-distance HLbL contributions to the muon g-2

The current 3.7σ discrepancy between the Standard Model prediction and the experimental value of the muon anomalous magnetic moment could be a hint for the existence of new physics. The hadronic light-by-light contribution is one of the pieces requiring improved precision on the theory side, and an important step is to derive short-distance constraints for this quantity containing four electromagn

A FUNCTIONAL VIEW REVEALS SUBSTANTIAL PREDICTABILITY OF POLLINATOR-MEDIATED SELECTION

A predictive understanding of adaptation to changing environments hinges on a mechanistic understanding of the extent and causes of variation in natural selection. Estimating variation in selection is difficult due to the complex relationships between phenotypic traits and fitness, and the uncertainty associated with individual selection estimates. Plant-pollinator interactions provide ideal syste

Metabolic engineering of Pseudomonas putida for production of vanillylamine from lignin-derived substrates

Whole-cell bioconversion of technical lignins using Pseudomonas putida strains overexpressing amine transaminases (ATAs) has the potential to become an eco-efficient route to produce phenolic amines. Here, a novel cell growth-based screening method to evaluate the in vivo activity of recombinant ATAs towards vanillylamine in P. putida KT2440 was developed. It allowed the identification of the na