Towards Grading Gleason Score using Generically Trained Deep convolutional Neural Networks
We developed an automatic algorithm with the purpose to assist pathologists to report Gleason score on malignant prostatic adenocarcinoma specimen. In order to detect and classify the cancerous tissue, a deep convolutional neural network that had been pre-trained on a large set of photographic images was used. A specific aim was to support intuitive interaction with the result, to let pathologists
