Search results

Filter

Filetype

Your search for "*" yielded 527622 hits

Sirtuins are Unaffected by PARP Inhibitors Containing Planar Nicotinamide Bioisosteres

PARP-family ADP-ribosyltransferases (PARPs) and sirtuin deacetylases all use NAD(+) as cosubstrate for ADP-ribosyl transfer. PARP inhibitors are important research tools and several are being evaluated in cancer treatment. With the exception of a few tankyrase inhibitors, all current PARP inhibitors mimic the nicotinamide moiety in NAD(+) and block the nicotinamide binding pocket. We report here t

Tankyrase 1 Inhibitors with Drug-like Properties Identified by Screening a DNA-Encoded Chemical Library

We describe the synthesis and screening of a DNA-encoded chemical library containing 76230 compounds. In this library, sets of amines and carboxylic acids are directly linked producing encoded compounds with compact structures and drug-like properties. Affinity screening of this library yielded inhibitors of the potential pharmaceutical target tankyrase 1, a poly(ADP-ribose) polymerase. These comp

Towards small molecule inhibitors of mono-ADP-ribosyltransferases

Protein ADP-ribosylation is a post-translational modification involved in DNA repair, protein degradation, transcription regulation, and epigenetic events. Intracellular ADP-ribosylation is catalyzed predominantly by ADP-ribosyltransferases with diphtheria toxin homology (ARTDs). The most prominent member of the ARTD family, poly(ADP-ribose) polymerase-1 (ARTD1/PARP1) has been a target for cancer

Identification of structure-activity relationships from screening a structurally compact DNA-encoded chemical library

Methods for the rapid and inexpensive discovery of hit compounds are essential for pharmaceutical research and DNA-encoded chemical libraries represent promising tools for this purpose. We here report on the design and synthesis of DAL-100K, a DNA-encoded chemical library containing 103 200 structurally compact compounds. Affinity screening experiments and DNA-sequencing analysis provided ligands

Structural basis for lack of ADP-ribosyltransferase activity in poly(ADP-ribose) polymerase-13/zinc finger antiviral protein

The mammalian poly(ADP-ribose) polymerase (PARP) family includes ADP-ribosyltransferases with diphtheria toxin homology (ARTD). Most members have mono-ADP-ribosyltransferase activity. PARP13/ARTD13, also called zinc finger antiviral protein, has roles in viral immunity and microRNA-mediated stress responses. PARP13 features a divergent PARP homology domain missing a PARP consensus sequence motif;

Pivotal and distinct role for Plasmodium actin capping protein alpha during blood infection of the malaria parasite

Accurate regulation of microfilament dynamics is central to cell growth, motility and response to environmental stimuli. Stabilizing and depolymerizing proteins control the steady-state levels of filamentous (F-) actin. Capping protein (CP) binds to free barbed ends, thereby arresting microfilament growth and restraining elongation to remaining free barbed ends. In all CPs characterized to date, a

Design, synthesis, crystallographic studies, and preliminary biological appraisal of new substituted triazolo[4,3-b]pyridazin-8-amine derivatives as tankyrase inhibitors

Searching for selective tankyrases (TNKSs) inhibitors, a new small series of 6,8-disubstituted triazolo[4,3-b]piridazines has been synthesized and characterized biologically. Structure-based optimization of the starting hit compound NNL (3) prompted us to the discovery of 4-(2-(6-methyl-[1,2,4]triazolo[4,3-b]pyridazin-8-ylamino)ethyl)phenol (12), a low nanomolar selective TNKSs inhibitor working a

Chemical probes to study ADP-ribosylation : Synthesis and biochemical evaluation of inhibitors of the human ADP-ribosyltransferase ARTD3/PARP3

The racemic 3-(4-oxo-3,4-dihydroquinazolin-2-yl)-N-[1-(pyridin-2-yl)ethyl]propanamide, 1, has previously been identified as a potent but unselective inhibitor of diphtheria toxin-like ADP-ribosyltransferase 3 (ARTD3). Herein we describe synthesis and evaluation of 55 compounds in this class. It was found that the stereochemistry is of great importance for both selectivity and potency and that subs

Pharmacology of ADP-ribosylation

ADP-ribosyltransferase ARTD1/PARP1 is a target for cancer and ischemia drug development. Several other ARTD-family enzymes have been characterized in recent years, and it has become clear that their inhibition might also have therapeutic value. This minireview series summarizes current knowledge of pharmacological inhibition of ADP-ribosyltransferases by a compound class called PARP inhibitors and

PARP inhibitor with selectivity toward ADP-ribosyltransferase ARTD3/PARP3

Inhibiting ADP-ribosyl transferases with PARP-inhibitors is considered a promising strategy for the treatment of many cancers and ischemia, but most of the cellular targets are poorly characterized. Here, we describe an inhibitor of ADP-ribosyltransferase-3/poly(ADP-ribose) polymerase-3 (ARTD3), a regulator of DNA repair and mitotic progression. In vitro profiling against 12 members of the enzyme

PARP inhibitors : polypharmacology versus selective inhibition

Inhibition of ADP-ribosyltransferases with diphtheria toxin homology (ARTD), widely known as the poly(ADP-ribose) polymerase (PARP) family, is a strategy under development for treatment of various conditions, including cancers and ischemia. Here, we give a brief summary of ARTD enzyme functions and the implications for their potential as therapeutic targets. We present an overview of the PARP inhi

Recognition of mono-ADP-ribosylated ARTD10 substrates by ARTD8 macrodomains

ADP-ribosyltransferases (ARTs) catalyze the transfer of ADP-ribose from NAD(+) onto substrates. Some ARTs generate in an iterative process ADP-ribose polymers that serve as adaptors for distinct protein domains. Other ARTs, exemplified by ARTD10, function as mono-ADP-ribosyltransferases, but it has been unclear whether this modification occurs in cells and how it is read. We observed that ARTD10 c

Structural biology of the writers, readers, and erasers in mono- and poly(ADP-ribose) mediated signaling

ADP-ribosylation of proteins regulates protein activities in various processes including transcription control, chromatin organization, organelle assembly, protein degradation, and DNA repair. Modulating the proteins involved in the metabolism of ADP-ribosylation can have therapeutic benefits in various disease states. Protein crystal structures can help understand the biological functions, facili

Discovery of ligands for ADP-ribosyltransferases via docking-based virtual screening

The diphtheria toxin-like ADP-ribosyltransferases (ARTDs) are an enzyme family that catalyzes the transfer of ADP-ribose units onto substrate proteins by using nicotinamide adenine dinucleotide (NAD(+)) as a cosubstrate. They have a documented role in chromatin remodelling and DNA repair, and inhibitors of ARTD1 and 2 (PARP1 and 2) are currently in clinical trials for the treatment of cancer. The

The corky root rot pathogen Pyrenochaeta lycopersici secretes a proteinaceous inducer of cell death affecting host plants differentially

Pathogenic isolates of Pyrenochaeta lycopersici, the causal agent of corky root rot of tomato, secrete cell death in tomato 1 (CDiT1), a homodimeric protein of 35 kDa inducing cell death after infiltration into the leaf apoplast of tomato. CDiT1 was purified by fast protein liquid chromatography, characterized by mass spectrometry and cDNA cloning. Its activity was confirmed after infiltration of

Crystal structure of human ADP-ribose transferase ARTD15/PARP16 reveals a novel putative regulatory domain

ADP-ribosylation is involved in the regulation of DNA repair, transcription, and other processes. The 18 human ADP-ribose transferases with diphtheria toxin homology include ARTD1/PARP1, a cancer drug target. Knowledge of other family members may guide therapeutics development and help evaluate potential drug side effects. Here, we present the crystal structure of human ARTD15/PARP16, a previously

Structural basis for the allosteric inhibitory mechanism of human kidney-type glutaminase (KGA) and its regulation by Raf-Mek-Erk signaling in cancer cell metabolism

Besides thriving on altered glucose metabolism, cancer cells undergo glutaminolysis to meet their energy demands. As the first enzyme in catalyzing glutaminolysis, human kidney-type glutaminase isoform (KGA) is becoming an attractive target for small molecules such as BPTES [bis-2-(5 phenylacetamido-1, 2, 4-thiadiazol-2-yl) ethyl sulfide], although the regulatory mechanism of KGA remains unknown.

Family-wide chemical profiling and structural analysis of PARP and tankyrase inhibitors

Inhibitors of poly-ADP-ribose polymerase (PARP) family proteins are currently in clinical trials as cancer therapeutics, yet the specificity of many of these compounds is unknown. Here we evaluated a series of 185 small-molecule inhibitors, including research reagents and compounds being tested clinically, for the ability to bind to the catalytic domains of 13 of the 17 human PARP family members i

Biochemical discrimination between selenium and sulfur 1 : a single residue provides selenium specificity to human selenocysteine lyase

Selenium and sulfur are two closely related basic elements utilized in nature for a vast array of biochemical reactions. While toxic at higher concentrations, selenium is an essential trace element incorporated into selenoproteins as selenocysteine (Sec), the selenium analogue of cysteine (Cys). Sec lyases (SCLs) and Cys desulfurases (CDs) catalyze the removal of selenium or sulfur from Sec or Cys

Cofactor mobility determines reaction outcome in the IMPDH and GMPR (β-α)8 barrel enzymes

Inosine monophosphate dehydrogenase (IMPDH) and guanosine monophosphate reductase (GMPR) belong to the same structural family, share a common set of catalytic residues and bind the same ligands. The structural and mechanistic features that determine reaction outcome in the IMPDH and GMPR family have not been identified. Here we show that the GMPR reaction uses the same intermediate E-XMP* as IMPDH