Adaptive Control of Data Center Cooling using Deep Reinforcement Learning
In this paper, we explore the use of Reinforcement Learning (RL) to improve the control of cooling equipment in Data Centers (DCs). DCs are inherently complex systems, and thus challenging to model from first principles. Machine learning offers a way to address this by instead training a model to capture the thermal dynamics of a DC. In RL, an agent learns to control a system through trial-and-err