Application of multiple spatial interpolation approaches to annual rainfall data in the Wadi Cheliff basin (north Algeria)
This study addresses a challenging problem of predicting mean annual precipitation across arid and semi-arid areas in northern Algeria, utilizing deterministic, geostatistical (GS), and machine learning (ML) models. Through the analysis of data spanning nearly five decades and encompassing 150 monitoring stations, the result of Random Forest showed the highest training performance, with R square v
